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ABSTRACT
BACKGROUND: To investigate the effects of adjunct ketamine treatment on depressive
symptoms and brain activity in chronic treatment-resistant schizophrenia (CTRS) patients
with treatment-resistant depressive (TRD) symptoms.
METHODS: Calgary Depression Scale for Schizophrenia (CDSS), positive and negative syndrome
scale (PANSS), and regional homogeneity (ReHo) results were compared before versus after
ketamine treatment in 12 CTRS patients with TRD symptoms.
RESULTS: From 7 days to 14 days after the first ketamine administration, CDSS and PANSS total
scores were reduced by 63.8% and 12.9%, respectively. By day 21, ReHo values had increased in
the main components of the default mode network (DMN) and bilateral orbitofrontal cortex
(OFC) after family-wise error correction. ReHo alterations did not correlate with TRD symptom
changes. TRD symptoms relapsed by the 21-day time point, while increased ReHo was
sustained. No adverse secondary effects (ASEs) necessitating medical intervention occurred.
CONCLUSIONS: Adjunct ketamine alleviation of TRD symptoms lasted only a week, whereas
increased ReHo in DMN regions and the OFC in CTRS patients was maintained beyond 2
weeks, indicating that adjunct ketamine is not well-suited for CTRS patients with TRD
symptoms and that effects on functional activity dissociate from effects on TRD symptoms.
This small-sample pilot study provides clues for further research into therapy for TRD
symptoms in CTRS patients.
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Introduction

Some 20% of chronic schizophrenia patients experience
moderate to severe depressive symptoms [1,2]. Con-
trary to prior models suggesting a dichotomy between
schizophrenia and depression [3], recent evidence has
suggested that depressive systems may predict poorer
outcomes in schizophrenia [2,4]. Moreover, depressive
symptoms have been linked to suicidality [5], poor
functional recovery, and poor quality of life in patients
with schizophrenia [1,5]. The addition of antidepress-
ant drugs to treat depressive symptoms in patients
with schizophrenia taking antipsychotics has been
reported to have poor efficacy [6–8]. Researchers have
undertaken the development of animal models to

explore depression treatment possibilities for patients
with schizophrenia [9].

Ketamine is an effective antidepressant agent,
especially in patients with treatment-resistant depress-
ive (TRD) symptoms [10–13]. A single administration
of ketamine (0.5 mg/kg) can induce immediate psycho-
tomimetic symptoms that recede within 2 h in healthy
adults [14]. It is unclear whether single or repeated sub-
anesthetic-dose ketamine administration has any
severe or long-term side effects [15–21]. Antidepress-
ant effects of ketamine have been associated with
brain functional activity alterations, mainly in the
medial prefrontal cortex (mPFC), anterior cingulate
cortex, posterior cingulate cortex, precuneus, angular
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gyrus, orbitofrontal cortex, subgenual anterior cingu-
late cortex, superior temporal gyrus, middle temporal
gyrus, and hippocampus [22–27].

Atypical brain activity findings have been reported
for both schizophrenia [28–30] and major depressive
disorder [31–33]. Interestingly, some similarities have
been identified between schizophrenia- and major
depressive disorder-related brain alteration patterns,
particularly in regional homogeneity (ReHo) data,
which represent local temporal homogeneity of regional
blood oxygen level-dependent signals and can be used
to assess resting-state neural activity [34–39]. Similar
antidepressant and antipsychotic brain activity normal-
ization effects have been reported for these two patient
populations, most notably in the default mode network
(DMN), temporal lobes, and frontal lobes [32,40–42].

Inspired by the aforementioned findings, we investi-
gated the effects of combining ketamine with thera-
peutic agents on TRD symptoms and brain ReHo in
chronic treatment-resistant schizophrenia (CTRS)
patients. We hypothesized that the addition of keta-
mine to therapeutic treatment regimens would
improve TRD symptoms in CTRS patients and that
such effects would be accompanied by alterations in
pivotal brain regions.

Methods

Patients

This study was approved by the Ethics Committee of
Tianjin Mental Health Center. The IRB number is
TJ2015KR052. All the informed consents were noticed
and obtained from the recruited patients. The inclusion
criteria were: (1) a diagnosis of CTRS, as described by
Howes [43]; (2) comorbid TRD symptoms, according
to Nierenberg’s criteria [44,45]; (3) active disorder
presentation; (4) an intelligence quotient > 80; and (5)
willingness of the patient (and guardian when appro-
priate) to volunteer to participate in the study. The
exclusion criteria were: (1) moderate to severe physical
disease (e.g. respiratory, cardiovascular, endocrine,
neurological, liver, or kidney disease) comorbidity;
(2) personal or family history of substance abuse; (3)
current nicotine addiction; (3) currently receiving elec-
troconvulsive therapy; (4) a history of loss of con-
sciousness for more than 5 min by any cause; (5) left-
handedness, as determined with the Annett Hand Pre-
ference Questionnaire; and (6) any magnetic resonance
imaging (MRI) contraindication, including claustro-
phobia. With these strict enrolment criteria, we were
able to enrol only 15 patient participants.

Adjunct ketamine administration

Following baseline assessment of depressive and psy-
chotic symptoms, medication dosages were

standardized during a 4-week adjunct ketamine treat-
ment period. Intravenous ketamine (0.5 mg/kg body
weight, H35020148, Fujian Gutian Pharmaceutical
Co., Ltd), and 25 of the study starting at 6 pm. Heart
rhythm, blood pressure, and blood oxygen were mon-
itored during and for the 2 h after ketamine infusion.
Liver and renal function were tested twice a week.
Heart rhythm, blood pressure, and blood oxygen
were monitored from 9 am to 10 am during the period
of ketamine administration. Physical signs and patient-
reported symptoms were also noted during this moni-
toring period. Adjunct ketamine treatment was ceased
immediately if a patient exhibited any adverse second-
ary effects (ASEs) that were considered high risk by the
patient’s neurologist or cardiologist.

Main and secondary effect assessment

The Calgary Depression Scale for Schizophrenia
(CDSS) and Positive and Negative Syndrome Scale
(PANSS) were used to assess depressive and psychotic
symptoms one time per week, respectively. Monitoring
indices, consults with neurologists and cardiologists,
and the Treatment Emergent Symptom Scale [46]
were used to detect ASE emergence.

Brain MRI data acquisition

We acquired functional MRI (fMRI) data at five time
points relative to the initiation of adjunct ketamine
treatment: at baseline (pretreatment) and day 7, day
14, day 21, and day 28 after treatment initiation. The
fMRI examinations were performed with a 3.0-T Dis-
covery MR750 system (GE, Milwaukee, WI). Each par-
ticipant was instructed to lie still while staying awake
with a relaxed mind during scanning; and they were
fitted with foam padding and ear plugs to limit head
motion and the effects of external noises. A single-
shot echo-planar sequence for resting-state fMRI was
applied as follows: repetition/echo times = 2000/
45 ms, field of view = 220 mm2, matrix = 64 × 64, flip
angle = 90°, slice thickness = 4 mm, and gap =
0.5 mm. Each functional run consisted of 180 image
volumes over a 32-axial-slice brain volume in each
patient. T1-weighted three-dimensional images (188
slices) were obtained with a brain volume sequence
constituted by the following parameters: repetition/
echo/inversion times = 8.17/3.18/450 ms, field of
view = 256 mm2, matrix = 256 × 256, and slice thick-
ness = 1 mm.

The fMRI data were preprocessed in SPM8 and
DPARSF V2.3 programs. The first 10 images were
excluded from each patient’s scan dataset to allow sig-
nal equilibration, and slice timing was performed to
correct for inter-slice temporal differences. Head
motion was screened and corrected for by the rigid
body realignment method.
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Statistical analysis

Before versus after treatment differences in ReHo were
subjected to family-wise error correction. A paired t-
test was used to compare the CDSS and PANSS scores
to ketamine treatment-induced ReHo changes. P
values < 0.05 were considered statistically significant.

Image data preprocessing

Pre- and post-treatment fMRI datasets were prepro-
cessed separately in three programs: FMRIB Software
Library, version 5 (fmrib.ox.ac.uk/fsl), Analysis of Func-
tionalNeuroImages (afni.nimh.nih.gov/afni/), and Free-
Surfer, version 5.3 (surfer.nmr.mgh.harvard.edu/).
High-resolutionT1 images aligned to the cortical surface
of each patient were reconstructed in accordance with
the FreeSurfer pipeline. Briefly, after registering the
images to the Talairach atlas and bias-field correction,
we conducted skull stripping, intensity normalization,
surface modelling, and spherical mapping. Sub-
sequently, we applied slice timing correction, deobli-
quing, and motion correction processes to the data.
Whole images were normalized according to their
mean intensity values and then scaled 10,000 times.
We removed linear and quadratic trends from the sig-
nals. We applied a transformation matrix generated by
boundary-based registration to co-register each image
with the T1 images, and then employed principal com-
ponent analysis of the time course to regress out five
major components of white matter and cerebrospinal
fluid, thereby reducing physiological (and other) noise.

Reho estimation and analysis

We used ReHo analysis to investigate spontaneous
neuronal activity and short-range connectivity, without
the need for an a priori hypothesis [39]. Briefly,
regional similarity across the time series was deter-
mined by calculating Kendall’s coefficient of concor-
dance of target-region surrounding voxels (n = 26)
for each target voxel. Preprocessed fMRI data were
subjected to low-band pass filtering (0.009–0.1 Hz)
and then re-sampled as 3-mm isotropic voxels without
spatial smoothing. Voxel ranks were computed at each
repetition time. ReHo values were calculated along the
middle of the gray matter-white matter boundary and
projected to surface vertices. Surface alignment of func-
tional signals can reduce inter-individual variability
related to cortical folding and limit activation spread
over distant regions in spatial smoothing processes.
Surface fMRI data obtained before and after ketamine
treatment were subjected to pair-wise registration. Sur-
face data were moved to a common spherical surface
(the fsaverage) and then smoothed spatially with a 5-
mm full-width at half-maximum Gaussian kernel.
The ReHo values obtained were transformed into Z

scores in the surface model, which were used in our
group-level statistical analysis.

To assess drug treatment effects, we applied general
linear modelling (participant age and intelligence quo-
tient were controlled for). The criteria for identifying
significant clusters were as follows: cluster p < 0.0001;
cluster size > 10 voxels after 10,000 Monte-Carlo z stat-
istic simulations; and cluster p < 0.05 after two-tailed
test and correction for hemispheric tests.

To identify potential cluster-wise ReHo change
relationships with changes in symptoms (which varied
across participants initially), we performed a corre-
lation analysis between percent changes in the ReHo
and symptom presentation measures. Spearman’s
rank-order method was used for correlation analysis
(N = 12 participants), which was conducted our in-
house code written inMATLAB software (MathWorks,
Inc., Natick, MA). ReHo change values were subjected
to family-wise error correction.

Results

Demographic and clinical characteristics of the
analyzed cohort

All 15 enrolled participants completed adjunct keta-
mine treatment (0% drop-out). However, complete
fMRI data could not be obtained from 3 participants
who were thus were not included in the final analysis.
CDSS and PANSS changes before versus after ketamine
administration were similar regardless of whether these
3 patients were included or excluded. Demographic
and clinical summaries of the final cohort of 12 partici-
pants are provided in Table 1. None of the participants
complained of ketamine-induced ASEs, though 1
patient reported that he experienced visual hallucina-
tions, wherein he hallucinated objects (e.g. an apple,
an eggplant) seven times (longest duration, 2 min).
The hallucinations occurred only within the first half
hour after the first ketamine infusion.

Ketamine treatment effects

Adjunct ketamine (0.5 mg/kg, intravenous over 1 h)
reduced both CDSS (depressive symptoms) scores
(63.7%decrease) andPANSSgeneral psychopathological
symptom scores (30.04% decrease) significantly from the
7th day after the first ketamine treatment to the 14th day
(Table 1). Subsequently, the mean CDSS score for the
cohort increased from day 14 to day 21. By day 28, the
mean CDSS score had increased to a level that was stat-
istically similar to the mean CDSS score at baseline,
despite maintenance of the fixed ketamine treatment
strategy. The CDSS score trajectory change can be seen
in Figure 1. However, PANSS negative (0.23% decrease)
and positive (0.06% decrease) scores did not change sig-
nificantly from pre- to post-ketamine adjunct treatment
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time points (Table 1). Furthermore, the non-effect on
PANSS positive scores indicates that the adjunct keta-
mine treatment did not induce psychotic symptom acti-
vation. None of the patients exhibited or reported ASEs
requiring medical intervention.

Reho alterations

Compared to pretreatment observations, we observed
increased ReHo mainly in the medial prefrontal cortex
(mPFC), ACC, posterior cingulate cortex, precuneus,
angular gyrus, and bilateral OFC, beginning from the
7th day after commencement of ketamine adminis-
tration (Figure 2A). ReHo values peaked on day 14
(Figure 2B), remained high on day 21 (Figure 2C),
and then were notably decreased on day 28 at which
time they did not differ significantly from baseline
levels (unable to withstand family-wise error correc-
tion) (Figure 2D). CDSS and PANSS alterations from
day 7 to day 14 did not correlate with any regional
ReHo changes.

Discussion

To the best of our knowledge, this pilot study is the first
study to examine adjunct ketamine effects on

psychiatric symptoms in CTRS patients with TRD
symptoms. Importantly, the present data demonstrate
a dissociation between ketamine effects on TRD symp-
toms and ketamine effects on functional brain activity
over time. That is, we found that adjunct ketamine alle-
viated TRD symptoms without activating psychotic
symptoms for only 1 week, but increased ReHo in
the mPFC, anterior cingulate cortex, posterior cingu-
late cortex, precuneus, angular gyrus, and OFC for 2
weeks, albeit with a gradually decreasing trend.

The mPFC, anterior cingulate, posterior cingulate,
precuneus, and angular gyrus, which have been ident-
ified as components of the DMN, and the OFC, which
is part of the affective network, are key regions related
to mood processing [47–50]. Notably, neural activities
in the DMN and OFC have been reported to be mark-
edly decreased in depressive patients [51–56]. Further-
more, structural and functional deficits in the DMN
and OFC have been related to affective and memory
processing disturbances in patients with schizophrenia
[57–64].

ReHo, which focuses on similarities over time, can
be used to assess functional brain alterations [34,65].
The present ReHo results indicating that ketamine
can enhance activity in the DMN and OFC while redu-
cing depressive symptom severity are consistent with
Reed and colleagues’ prior work demonstrating that
ketamine can normalize brain activity during emotion-
ally valenced attentional processing in depressive sub-
jects [24]. Previous studies reporting that a single
ketamine treatment may alleviate treatment resistant
depression by normalizing aberrant activity in DMN
components and the frontal cortex [66–68]. Although
it is well established that ketamine can decrease func-
tional activity in the DMN and other brain regions
[47–60], we found increased ReHo in the DMN in
CTRS patients with TRD symptoms in this pilot
study. We postulated that this seemingly contradictory
finding may be related to neuropathological features of
schizophrenia. Indeed the neuropathological features
of depressive symptoms in patients diagnosed with
major depressive disorder have been reported to
differ from those of depressive symptoms in patients
with schizophrenia [69–71]. Hence, we posit that

Table 1. Mean demographic and clinical characteristics of analyzed participants (N = 12).
Variable Before treatment After 2 weeks of treatment After 4 weeks of treatment F P

Age, years 35.16 ± 7.63 – – – –
Education, years 16. 62 ± 3.96 – – – –
Illness duration, years 5.38 ± 1.42 – – – –
Gender, males/females 7/5 – – – –
Chlorpromazine equivalent dose 1250.70 ± 200.80 – – – –
CDSS score 16.50 ± 3.94 5.9 8 ± 1.94 14.28 ± 2.30 14.298 <.001
PANSS scores
Total 83.90 ± 9.23 73.04 ± 10.10 80.23 ± 8.51 3.051 .016
Positive 25.60 ± 3.75 25.44 ± 4.05 26.11 ± 5.14 0.198 .921
Negative 27.71 ± 5.19 27.31 ± 4.93 26.00 ± 5.36 0.194 .848
General psychopathological symptoms 29.90 ± 5.41 20.81 ± 4.97 26.00 ± 3.85 4.286 <.001

Treatment Emergent Symptom Scale score 22.57 ± 6.55 21.54 ± 5.33 20.99 ± 4.70 0.688 .433

Note: Mean values are reported with standard deviations.

Figure 1. Trajectory of CDSS scores among patients with
chronic, treatment-resistant schizophrenia and treatment-
resistant depression receiving ketamine injections.
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ketamine-induced ReHo alterations in schizophrenics
may also be different from those in patients with
major depressive disorder. Further research is needed
to explain these findings.

The antidepressant effect of ketamine has been
related to ketamine-induced increases in glutamate
release [72]. However, ketamine has been used to
make a schizophrenia animal model, which would
suggest that ketamine might activate psychotic symp-
toms. In our study, we did not find evidence of any
ketamine-induced psychotic symptoms. It may be
that such effects require a higher dose of ketamine
given that mid-range doses are used for both animal
model induction and psychedelic use, and high doses
are used for anesthesia. Meanwhile, we posit that
low-dose ketamine might be antidepressive. Indeed,
low-dose ketamine has been reported to lead to the
repair of disrupted dendrites in the frontal lobes [73].
Hence, we postulate that low-dose ketamine appears
to not trigger negative effects in patients with schizo-
phrenia, and might even have positive effects. In the
context, it is interesting to note that the glutamatergic
system has been reported to affect the efficacy of anti-
psychotic medications [74]. It has been suggested that

pharmacological modulation of NMDA receptor func-
tion might reverse the hypothesized abnormal gluta-
matergic transmission in schizophrenia [75].

The present demonstration of a dissociation
between clinical and functional brain changes follow-
ing adjunct ketamine administration raises issues to
be addressed in future research. We postulate three
possible reasons that may explain, perhaps in part,
this dissociation phenomenon. First, neuronal inter-
actions depend on action potentials and synaptic trans-
mission. It may be that fMRI-detected blood
oxygenation level- dependent signals (which are
delayed relative to real time neuronal activity) remain
after they are no longer reflective of current neural elec-
tric activity, or that the changes they reflect are no
longer sufficient to affect ongoing neural network
activity. This possibility is challenged by the fact that
a week far exceeds the delay from electric activity to
blood oxygenation level-dependent signals. Second,
the characteristics of our study cohort, CTRS patients
with TRD symptoms, may include particularly rapid
neurotransmitter desensitization, thereby weakening a
synergistic ketamine effect. However, one week would
be a short time period for such desensitization

Figure 2. The ReHo in medial prefrontal cortex, ACC, posterior cingulate cortex, precuneus, angular gyrus, and bilateral OFC after
the administration of ketamine. (A) 7 days, (B) 14 days, (C) 21 days, and (D) 28 days.
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regardless. If these patients have rapid desensitization
characteristics, it would be expected to affect their
addiction tendency. Third, we postulate that DMN
ReHo values may not be suitable indices of clinical
effects given that ReHo data are derived from calcu-
lations rather than being derived directly from micro-
imaging. Thus, ReHo does not provide direct
evidence for neural structural alterations or discharge
activities.

Limitations

This pilot study had several limitations. First, this line of
research is in an exploratory stage with little infor-
mation in the literature regarding the effects of low-
dose ketamine on TRD symptoms in treatment-resist-
ant schizophrenia. The present evidence is based on a
small sample in which only patients with treatment-
resistant depression and treatment-resistant schizo-
phrenia were included. Although this emergent evi-
dence is not strong enough to influence clinical
practice at this stage, it provides important clues for
further study. Large-cohort studies are needed to delin-
eate and explain ketamine effects on depressive symp-
toms in schizophrenia. Secondly, the patients in our
sample were taking a variety of antidepressants, with
most taking drugs from two different chemical consti-
tution categories at the same time. Because we did not
transfer antidepressant dosages to a uniform dosage,
we cannot regress out the possible influence of anti-
depressants on our ReHo data. However, during the
study, we did fix the dosage of all therapeutic agents to
reduce dynamic antidepressant influences on ReHo.
Third, although ketamine has been reported previously
to normalize aberrant functional connectivity [26,76],
we found that functional connectivity alterations do
not withstand family-wise error correction, possibly
due to our small sample size providing insufficient
power. Fourth, we also calculated amplitudes of low-fre-
quency fluctuation before and after ketamine treatment
(data not shown due to space limitations), and found
that brain regionswith increased fluctuation amplitudes
following ketamine administration overlapped to a large
extentwith brain regions exhibiting increasedReHoand
that those increases also did not correlate with symptom
changes. Fifth, to bettermonitorASEs, we included only
patients with full insight, which excludes most schizo-
phrenics and thus may limit the generalizability of the
current findings. Sixth, we compared only symptoms
and ReHo changes before versus after ketamine treat-
ment in a single group sample. Thus, although the
strength of this study is not comparable to that of a ran-
domized controlled trial, our findings provide impor-
tant clues for future trials. Seventh, although most
studies examining potential adverse effects of ketamine
interaction with antidepressants have not found any
[72], such effects were suggested in a recent study

[72]. Our patients’ liver and renal function test results
were in normal range. Because ketamine is metabolized
by 3A4 and 2B6 enzymes, which are expressed primarily
in the liver, we must be highly cautious about potential
metabolic ASEs. Eighth, although ketamine alone has
been reported to alleviate TRD symptoms [77], we did
not ask our patients to stop taking their prescribed anti-
depressants because of the potential that doing somight
lead to a worsening of psychotic symptoms.

Conclusion

To the best of our knowledge, this pilot study is the first
study to investigate adjunct ketamine treatment effects
on treatment-resistant depressive symptoms and con-
comitant functional brain alterations in patients with
treatment-resistant schizophrenia. Importantly, we
found that a low dosage regimen of adjunct ketamine
can alleviate depressive symptoms and increase func-
tional activity in the DMN and OFC of this patient
population. Although our findings should be inter-
preted with appropriate caution given the limitations
of our study, they provide important clues for further
research exploring treatment strategies for this patient
population.
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